Abstract

The Kitaev quantum spin liquid epitomizes an entangled topological state, for which two flavors of fractionalized low-energy excitations are predicted: the itinerant Majorana fermion and the Z2 gauge flux. It was proposed recently that fingerprints of fractional excitations are encoded in the phonon spectra of Kitaev quantum spin liquids through a novel fractional-excitation-phonon coupling. Here, we detect anomalous phonon effects in α-RuCl3 using inelastic X-ray scattering with meV resolution. At high temperature, we discover interlaced optical phonons intercepting a transverse acoustic phonon between 3 and 7 meV. Upon decreasing temperature, the optical phonons display a large intensity enhancement near the Kitaev energy, JK~8 meV, that coincides with a giant acoustic phonon softening near the Z2 gauge flux energy scale. These phonon anomalies signify the coupling of phonon and Kitaev magnetic excitations in α-RuCl3 and demonstrates a proof-of-principle method to detect anomalous excitations in topological quantum materials.

It was recently proposed that the coupling between phonons and fractional excitations of a Kitaev quantum spin liquid can be detected in its phonon dynamics. Here, the authors report signatures of this coupling, manifested in low-energy phonon anomalies measured by inelastic X-ray scattering with meV resolution.

Details

Title
Giant phonon anomalies in the proximate Kitaev quantum spin liquid α-RuCl3
Author
Li, Haoxiang 1 ; Zhang, T T 2 ; Said, A 3 ; Fabbris, G 3   VIAFID ORCID Logo  ; Mazzone, D G 4   VIAFID ORCID Logo  ; Yan, J Q 1 ; Mandrus, D 5 ; Halász, Gábor B 1 ; Okamoto, S 1   VIAFID ORCID Logo  ; Murakami, S 2   VIAFID ORCID Logo  ; Dean M P M 6   VIAFID ORCID Logo  ; Lee, H N 1   VIAFID ORCID Logo  ; Miao, H 1   VIAFID ORCID Logo 

 Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, USA (GRID:grid.135519.a) (ISNI:0000 0004 0446 2659) 
 Tokyo Institute of Technology, Okayama, Department of Physics, Meguro-ku, Japan (GRID:grid.32197.3e) (ISNI:0000 0001 2179 2105); Tokyo Institute of Technology, Nagatsuta, Midori-ku, Tokodai Institute for Element Strategy, Yokohama, Japan (GRID:grid.32197.3e) (ISNI:0000 0001 2179 2105) 
 Argonne National Laboratory, Advanced Photon Source, Argonne, USA (GRID:grid.187073.a) (ISNI:0000 0001 1939 4845) 
 Brookhaven National Laboratory, Condensed Matter Physics and Materials Science Department, Upton, USA (GRID:grid.202665.5) (ISNI:0000 0001 2188 4229); Paul Scherrer Institut, Laboratory for Neutron Scattering and Imaging, Villigen, Switzerland (GRID:grid.5991.4) (ISNI:0000 0001 1090 7501) 
 Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, USA (GRID:grid.135519.a) (ISNI:0000 0004 0446 2659); the University of Tennessee at Knoxville, Department of Materials Science and Engineering, Knoxville, USA (GRID:grid.411461.7) (ISNI:0000 0001 2315 1184) 
 Brookhaven National Laboratory, Condensed Matter Physics and Materials Science Department, Upton, USA (GRID:grid.202665.5) (ISNI:0000 0001 2188 4229) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2539746677
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.