Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper deals with broadband near-infrared luminescence properties of lead germanate glass triply doped with Yb3+/Er3+/Tm3+. Samples were excited at 800 nm and 975 nm. Their emission intensities and lifetimes depend significantly on Er3+ and Tm3+ concentrations. For samples excited at 800 nm, broadband emissions corresponding to the overlapped 3H43F4 (Tm3+) and 4I13/24I15/2 (Er3+) transitions centered at 1.45 µm and 1.5 µm was identified. Measurements of decay curves confirm reduction of 3H4 (Tm3+), 2F5/2 (Yb3+) and 4I13/2 (Er3+) luminescence lifetimes and the presence of energy-transfer processes. The maximal spectral bandwidth equal to 269 nm for the 3F43H6 transition of Tm3+ suggests that our glass co-doped with Yb3+/Er3+/Tm3+ is a good candidate for broadband near-infrared emission. The energy transfer from 4I13/2 (Er3+) to 3F4 (Tm3+) and cross-relaxation processes are responsible for the enhancement of broadband luminescence near 1.8 µm attributed to the 3F43H6 transition of thulium ions in lead germanate glass under excitation of Yb3+ ions at 975 nm.

Details

Title
Broadband Near-Infrared Luminescence in Lead Germanate Glass Triply Doped with Yb3+/Er3+/Tm3+
Author
Pisarski, Wojciech A 1 ; Pisarska, Joanna 1 ; Lisiecki, Radosław 2 ; Ryba-Romanowski, Witold 2 

 Institute of Chemistry, University of Silesia, Szkolna 9 Street, 40-007 Katowice, Poland; [email protected] 
 Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2 Street, 50-422 Wrocław, Poland; [email protected] (R.L.); [email protected] (W.R.-R.) 
First page
2901
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2539939045
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.