Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Lipid nanoparticles based on multiple emulsion (W/O/W) systems are suitable for incorporating hydrophilic active substances, including iridoid glycosides. This study involved optimization of composition of lipid nanoparticles, incorporation of active compounds (aucubin and catalpol), evaluation of stability of the resulting nanocarriers, and characterization of their lipid matrix. Based on 32 factorial design, an optimized dispersion of lipid nanoparticles (solid lipid:surfactant—4.5:1.0 wt.%) was developed, predisposed for the incorporation of iridoid glycosides by emulsification-sonication method. The encapsulation efficiency of the active substances was determined at nearly 90% (aucubin) and 77% (catalpol). Regarding the stability study, room temperature was found to be the most suitable for maintaining the expected physicochemical parameter values (particle size < 100 nm; polydispersity index < 0.3; zeta potential > |± 30 mV|). Characterization of the lipid matrix confirmed the nanometer size range of the resulting carriers (below 100 nm), as well as the presence of the lipid in the stable β’ form.

Details

Title
Lipid Nanoparticles Loaded with Iridoid Glycosides: Development and Optimization Using Experimental Factorial Design
Author
Dąbrowska, Marta 1   VIAFID ORCID Logo  ; Souto, Eliana B 2   VIAFID ORCID Logo  ; Nowak, Izabela 3   VIAFID ORCID Logo 

 Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; [email protected]; Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; [email protected] 
 Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; [email protected]; CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal 
 Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; [email protected] 
First page
3161
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2539957587
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.