Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Three-dimensional GPR imaging requires evenly and densely distributed measurements, ideally collected without the need for ground surface markings, which is difficult to achieve in large-scale surveys. In this study, a guidance system was developed to guide the GPR operator to walk along a predesigned traverse, analogous to the flight path design of an airborne drone. The guidance system integrates an auto-track total station unit (ATTS), and by estimating the real-time offset angle and distance, guidance corrections can be provided to the operator in real time. There are two advantages: (1) reduced survey time as grid marking on the ground is no longer needed and (2) accurate positioning of each traverse. Lab and field experiments were conducted in order to validate the guidance system. The results show that with the guidance system, the survey paths were better defined and followed in terms of feature connectivity and resolution of images, and the C-scans generated were closer to the real subsurface world.

Details

Title
GPR Virtual Guidance System for Subsurface 3D Imaging
Author
Ching, Gabbo P H 1 ; Chang, Ray K W 1 ; Luo, Tess X H 2 ; Lai, Wallace W L 1 

 Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong; [email protected] (G.P.H.C.); [email protected] (R.K.W.C.) 
 Department of Transportation Engineering, Shenzhen University, Shenzhen 518000, China; [email protected] 
First page
2154
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2539968066
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.