Abstract

Elaborating on the novel formulation of the loop-tree duality, we introduce the Mathematica package Lotty that automates the latter at multi-loop level. By studying the features of Lotty and recalling former studies, we discuss that the representation of any multi-loop amplitude can be brought in a form, at integrand level, that only displays physical information, which we refer to as the causal representation of multi-loop Feynman integrands. In order to elucidate the role of Lotty in this automation, we recall results obtained for the calculation of the dual representation of integrands up-to four loops. Likewise, within Lotty framework, we provide support to the all-loop causal representation recently conjectured by the same author. The numerical stability of the integrands generated by Lotty is studied in two-loop planar and non-planar topologies, where a numerical integration is performed and compared with known results.

Details

Title
Lotty – The loop-tree duality automation
Author
Torres Bobadilla William J 1   VIAFID ORCID Logo 

 Werner-Heisenberg-Institut, Max-Planck-Institut für Physik, Munich, Germany (GRID:grid.435824.c) (ISNI:0000 0001 2375 0603) 
Publication year
2021
Publication date
Jun 2021
Publisher
Springer Nature B.V.
ISSN
14346044
e-ISSN
14346052
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2540613794
Copyright
© The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.