It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Conventional planar frequency selective surfaces (FSSs) are characterized in the far-field region and they are sensitive to the incidence angle of impinging waves. In this paper, a spherical dome FSS is presented, aiming to provide improved angular stable bandpass filtering performance as compared to its planar counterpart when the FSS is placed in the near-field region of an antenna source. A comparison between the conformal FSS and a finite planar FSS is presented through simulations at the frequency range between 26 to 40 GHz in order to demonstrate the advantages of utilizing the conformal FSS in the near-field. The conformal FSS is 3D printed and copper electroplated, which leads to a low-cost and lightweight bandpass filter array. Placing it in the near-field region of a primary antenna can be used as radomes to realize compact high-performance mm-wave systems. The comparison between simulated and measured conformal FSS results is in good agreement. The challenges that arise when designing, manufacturing, and measuring this type of structure are reported and guidelines to overcome these are presented.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Oviedo, Department of Electrical Engineering, Gijón, Spain (GRID:grid.10863.3c) (ISNI:0000 0001 2164 6351)
2 Loughborough University, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough, Leicestershire, UK (GRID:grid.6571.5) (ISNI:0000 0004 1936 8542)