It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this investigation, heat transportation together with irreversibility analysis for the flow of couple stress hybrid nanofluid past over a stretching surface is considered. The innovative characteristics and aims of this work are to note that the transportation heat couple stress model involves EMHD, viscous dissipation, Joule heating, and heat absorption, and omission. The hybrid nanofluid is prepared due to the suspension of the solid nanoparticles of the SWCNTs and MWCNTs in pure human blood. This mathematical model is an appropriate model for biological advantages including testing of human blood for drug deliveries to various parts of the human body. Particularly, the Prandtl number used for the blood is 21 and very large as compared to the other base fluids. Necessary modifications are used to translate the defining partial differential equations and boundary conditions into a layout that can be computed. To obtain mathematical approximations for the resulting scheme of nonlinear differential equations, the innovative homotopy analysis method (HAM) is used. The explanation for velocity, energy, and entropy are exposed and the flow against various influential factors (
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 King Mongkut’s University of Technology Thonburi (KMUTT), Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, Bangkok, Thailand (GRID:grid.412151.2) (ISNI:0000 0000 8921 9789)
2 Saudi Electronic University, Department of Basic Sciences, College of Science and Theoretical Studies, Riyadh, Saudi Arabia (GRID:grid.449598.d) (ISNI:0000 0004 4659 9645)
3 King Mongkut’s University of Technology Thonburi (KMUTT), Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, Bangkok, Thailand (GRID:grid.412151.2) (ISNI:0000 0000 8921 9789); China Medical University, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan (GRID:grid.254145.3) (ISNI:0000 0001 0083 6092)
4 City University of Science and Information Technology, Department of Mathematics, Peshawar, Pakistan (GRID:grid.444986.3) (ISNI:0000 0004 0609 217X)
5 Rajamangala University of Technology Thanyaburi, Applied Mathematics for Science and Engineering Research Unit (AMSERU), Program in Applied Statistics, Department of Mathematics and Computer Science, Faculty of Science and Technology, Thanyaburi, Thailand (GRID:grid.440403.7) (ISNI:0000 0004 0646 5810)