It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Target temperature management (TTM) is suggested to reduce brain damage in the presence of global or local ischemia. Prompt TTM application may help to improve outcomes, but it is often hindered by technical problems, mainly related to the portability of cooling devices and temperature monitoring systems. Tympanic temperature (TTy) measurement may represent a practical, non-invasive approach for core temperature monitoring in emergency settings, but its accuracy under different TTM protocols is poorly characterized. The present scoping review aimed to collect the available evidence about TTy monitoring in TTM to describe the technique diffusion in various TTM contexts and its accuracy in comparison with other body sites under different cooling protocols and clinical conditions.
Methods
The scoping review was conducted following the guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analysis extension for scoping reviews (PRISMA-ScR). PubMed, Scopus, and Web of Science electronic databases were systematically searched to identify studies conducted in the last 20 years, where TTy was measured in TTM context with specific focus on pre-hospital or in-hospital emergency settings.
Results
The systematic search identified 35 studies, 12 performing TTy measurements during TTM in healthy subjects, 17 in patients with acute cardiovascular events, and 6 in patients with acute neurological diseases. The studies showed that TTy was able to track temperature changes induced by either local or whole-body cooling approaches in both pre-hospital and in-hospital settings. Direct comparisons to other core temperature measurements from other body sites were available in 22 studies, which showed a faster and larger change of TTy upon TTM compared to other core temperature measurements. Direct brain temperature measurements were available only in 3 studies and showed a good correlation between TTy and brain temperature, although TTy displayed a tendency to overestimate cooling effects compared to brain temperature.
Conclusions
TTy was capable to track temperature changes under a variety of TTM protocols and clinical conditions in both pre-hospital and in-hospital settings. Due to the heterogeneity and paucity of comparative temperature data, future studies are needed to fully elucidate the advantages of TTy in emergency settings and its capability to track brain temperature.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer