It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Current text mining tools supporting abstract screening in systematic reviews are not widely used, in part because they lack sensitivity and precision. We set out to develop an accessible, semi-automated “workflow” to conduct abstract screening for systematic reviews and other knowledge synthesis methods.
Methods
We adopt widely recommended text-mining and machine-learning methods to (1) process title-abstracts into numerical training data; and (2) train a classification model to predict eligible abstracts. The predicted abstracts are screened by human reviewers for (“true”) eligibility, and the newly eligible abstracts are used to identify similar abstracts, using near-neighbor methods, which are also screened. These abstracts, as well as their eligibility results, are used to update the classification model, and the above steps are iterated until no new eligible abstracts are identified. The workflow was implemented in R and evaluated using a systematic review of insulin formulations for type-1 diabetes (14,314 abstracts) and a scoping review of knowledge-synthesis methods (17,200 abstracts). Workflow performance was evaluated against the recommended practice of screening abstracts by 2 reviewers, independently. Standard measures were examined: sensitivity (inclusion of all truly eligible abstracts), specificity (exclusion of all truly ineligible abstracts), precision (inclusion of all truly eligible abstracts among all abstracts screened as eligible), F1-score (harmonic average of sensitivity and precision), and accuracy (correctly predicted eligible or ineligible abstracts). Workload reduction was measured as the hours the workflow saved, given only a subset of abstracts needed human screening.
Results
With respect to the systematic and scoping reviews respectively, the workflow attained 88%/89% sensitivity, 99%/99% specificity, 71%/72% precision, an F1-score of 79%/79%, 98%/97% accuracy, 63%/55% workload reduction, with 12%/11% fewer abstracts for full-text retrieval and screening, and 0%/1.5% missed studies in the completed reviews.
Conclusion
The workflow was a sensitive, precise, and efficient alternative to the recommended practice of screening abstracts with 2 reviewers. All eligible studies were identified in the first case, while 6 studies (1.5%) were missed in the second that would likely not impact the review’s conclusions. We have described the workflow in language accessible to reviewers with limited exposure to natural language processing and machine learning, and have made the code available to reviewers.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer