It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This is a sequel to our recent work [1] in which we calculated the lepton number violating (LNV) K± decays due to contact dimension-9 (dim-9) quark-lepton effective interactions that are induced at a high energy scale. In this work we investigate the long- distance contribution to the decays arising from the exchange of a neutrino. These decays can probe LNV interactions involving the second generation of fermions that are not reach- able in nuclear neutrinoless double-β decays. Our study is completely formulated in the framework of effective field theories (EFTs), from the standard model effective field theory (SMEFT) through the low energy effective field theory (LEFT) to chiral perturbation theory (χPT). We work to the first nontrivial orders in each effective field theory, collect along the way the matching conditions and renormalization group effects, and express the decay branching ratios in terms of the Wilson coefficients associated with the dim-5 and dim-7 operators in SMEFT. Our result is general in that it does not depend on dynamical details of physics at a high scale that induce the effective interactions in SMEFT and in that it does not appeal to any hadronic models. We find that the long-distance contribution overwhelmingly dominates over the contact or short-distance one. Assuming the new physics scale to be around a TeV, the branching ratios are predicted to be below the current experimental upper bounds by several orders of magnitude.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Nankai University, School of Physics, Tianjin, China (GRID:grid.216938.7) (ISNI:0000 0000 9878 7032); Peking University, Center for High Energy Physics, Beijing, China (GRID:grid.11135.37) (ISNI:0000 0001 2256 9319)
2 National Taiwan University, Department of Physics, Taipei, Taiwan (GRID:grid.19188.39) (ISNI:0000 0004 0546 0241)