It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This study examines the specific effect of Tween 80 on the conversion of anthracene (ANT) in laccase medium system regarding surfactant chemical changes and mechanism. The conversion rate and degradation products of ANT were investigated in different concentrations of Tween 80 solution. Between Tween 80 concentration 0–40 critical micelle concentrations (CMC), the kinetic parameter-k (h−1) and corresponding half-life T1/2 decreased with increasing concentration. When Tween 80 was above 20 CMC the laccase-medium system converted > 95% of ANT to anthraquinone within 12 h. During the entire enzymatic reaction, the laccase activity in the system increased with increasing Tween 80 concentration. Combined with GC/MS analysis of the product, it was speculated that hydrogens belonging to the ether-oxygen bond and carbon–carbon double bond α-CH of Tween 80, were removed by the laccase-media system, promoting its degradation. Additionally, enhanced activity caused by oxygen free radicals (ROS) such as RO• and ROO•, continuously oxidized Tween 80, which in turn produced free radicals while converting ANT. This study provides new theoretical support toward the application of surfactants in the elimination of polycyclic aromatic hydrocarbons.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Guangdong University of Technology, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangzhou, China (GRID:grid.411851.8) (ISNI:0000 0001 0040 0205)