Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, nanocomposites with polyamide 12 (PA12) as the polymer matrix and multiwalled carbon nanotubes (MWCNTs) and carbon black (CB) at different loadings (2.5, 5.0, and 10.0 wt.%) as fillers, were produced in 3D printing filament form by melt mixing extrusion process. The filament was then used to build specimens with the fused filament fabrication (FFF) three-dimensional (3D) printing process. The aim was to produce by FFF 3D printing, electrically conductive and thermoelectric functional specimens with enhanced mechanical properties. All nanocomposites’ samples were electrically conductive at filler loadings above the electrical percolation threshold. The highest thermoelectric performance was obtained for the PA12/CNT nanocomposite at 10.0 wt.%. The static tensile and flexural mechanical properties, as well as the Charpy’s impact and Vickers microhardness, were determined. The highest improvement in mechanical properties was observed for the PA12/CNT nanocomposites at 5.0 wt.% filler loading. The fracture mechanisms were identified by fractographic analyses of scanning electron microscopy (SEM) images acquired from fractured surfaces of tensile tested specimens. The nanocomposites produced could find a variety of applications such as; 3D-printed organic thermoelectric materials for plausible large-scale thermal energy harvesting applications, resistors for flexible circuitry, and piezoresistive sensors for strain sensing.

Details

Title
Polyamide 12/Multiwalled Carbon Nanotube and Carbon Black Nanocomposites Manufactured by 3D Printing Fused Filament Fabrication: A Comparison of the Electrical, Thermoelectric, and Mechanical Properties
Author
Vidakis, Nectarios 1 ; Petousis, Markos 1   VIAFID ORCID Logo  ; Tzounis, Lazaros 2 ; Velidakis, Emmanuel 1 ; Mountakis, Nikolaos 1 ; Grammatikos, Sotirios A 3   VIAFID ORCID Logo 

 Mechanical Engineering Department, Hellenic Mediterranean University, 71410 Heraklion, Greece; [email protected] (N.V.); [email protected] (E.V.); [email protected] (N.M.) 
 Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; [email protected] 
 Department of Manufacturing & Civil Engineering, NTNU-Norwegian University of Science and Technology, Building B’, Teknologivegen 22, 2815 Gjøvik, Norway; [email protected] 
First page
38
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
23115629
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2544477960
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.