Full Text

Turn on search term navigation

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

High complexity and growing interdependencies of chemical and process facilities have made them increasingly vulnerable to domino effects. Domino effects, particularly fire dominoes, are spatial-temporal phenomena where not only the location of involved units, but also their temporal entailment in the accident chain matter. Spatial-temporal dependencies and uncertainties prevailing during domino effects, arising mainly from possible synergistic effects and randomness of potential events, restrict the use of conventional risk assessment techniques such as fault tree and event tree. Bayesian networks—a type of probabilistic network for reasoning under uncertainty—have proven to be a reliable and robust technique for the modeling and risk assessment of domino effects. In the present study, applications of Bayesian networks to modeling and safety assessment of domino effects in petroleum tank terminals has been demonstrated via some examples. The tutorial starts by illustrating the inefficacy of event tree analysis in domino effect modeling and then discusses the capabilities of Bayesian network and its derivatives such as dynamic Bayesian network and influence diagram. It is also discussed how noisy OR can be used to significantly reduce the complexity and number of conditional probabilities required for model establishment.

Details

Title
A Tutorial on Fire Domino Effect Modeling Using Bayesian Networks
Author
Khakzad, Nima  VIAFID ORCID Logo 
First page
240
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
26733951
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2544521024
Copyright
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.