Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Saturated fatty acid is one of the important nutrients, but contributes to lipotoxicity in the liver, causing hepatic steatosis. Aqueous pepino leaf extract (AEPL) in the previous study revealed alleviated liver lipid accumulation in metabolic syndrome mice. The study aimed to investigate the mechanism of AEPL on saturated long-chain fatty acid-induced lipotoxicity in HepG2 cells. Moreover, the phytochemical composition of AEPL was identified in the present study. HepG2 cells treated with palmitic acid (PA) were used for exploring the effect of AEPL on lipid accumulation, apoptosis, ER stress, and antioxidant response. The chemical composition of AEPL was analyzed by HPLC-ESI-MS/MS. AEPL treatment reduced PA-induced ROS production and lipid accumulation. Further molecular results revealed that AEPL restored cytochrome c in mitochondria and decreased caspase 3 activity to cease apoptosis. In addition, AEPL in PA-stressed HepG2 cells significantly reduced the ER stress and suppressed SREBP-1 activation for decreasing lipogenesis. For defending PA-induced oxidative stress, AEPL promoted Nrf2 expression and its target genes, SOD1 and GPX3, expressions. The present study suggested that AEPL protected from PA-induced lipotoxicity through reducing ER stress, increasing antioxidant ability, and inhibiting apoptosis. The efficacy of AEPL on lipotoxicity was probably concerned with kaempferol and isorhamnetin derived compounds.

Details

Title
Aqueous Extract of Pepino Leaves Ameliorates Palmitic Acid-Induced Hepatocellular Lipotoxicity via Inhibition of Endoplasmic Reticulum Stress and Apoptosis
Author
Jen-Ying Hsu 1   VIAFID ORCID Logo  ; Hui-Hsuan Lin 2   VIAFID ORCID Logo  ; Charng-Cherng Chyau 3 ; Wang, Zhi-Hong 4 ; Jing-Hsien Chen 5   VIAFID ORCID Logo 

 Department of Nutrition, Chung Shan Medical University, Taichung City 40201, Taiwan; [email protected] 
 Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City 40201, Taiwan; [email protected] 
 Research Institute of Biotechnology, Hungkuang University, Taichung City 43302, Taiwan; [email protected] 
 Department of Food Nutrition and Health Biotechnology, Asia University, Taichung City 41354, Taiwan; [email protected] 
 Department of Nutrition, Chung Shan Medical University, Taichung City 40201, Taiwan; [email protected]; Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan 
First page
903
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763921
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2544570450
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.