Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Recently, small compound-based therapies have provided new insights into the treatment of glioblastoma multiforme (GBM) by inducing oxidative impairment. Kinetin riboside (KR) and newly designed derivatives (8-azaKR, 7-deazaKR) selectively affect the molecular pathways crucial for cell growth by interfering with the redox status of cancer cells. Thus, these compounds might serve as potential alternatives in the oxidative therapy of GBM. The increased basal levels of reactive oxygen species (ROS) in GBM support the survival of cancer cells and cause drug resistance. The simplest approach to induce cell death is to achieve the redox threshold and circumvent the antioxidant defense mechanisms. Consequently, cells become more sensitive to oxidative stress (OS) caused by exogenous agents. Here, we investigated the effect of KR and its derivatives on the redox status of T98G cells in 2D and 3D cell culture. The use of spheroids of T98G cells enabled the selection of one derivative—7-deazaKR—with comparable antitumor activity to KR. Both compounds induced ROS generation and genotoxic OS, resulting in lipid peroxidation and leading to apoptosis. Taken together, these results demonstrated that KR and 7-deazaKR modulate the cellular redox environment of T98G cells, and vulnerability of these cells is dependent on their antioxidant capacity.

Details

Title
Implications of Oxidative Stress in Glioblastoma Multiforme Following Treatment with Purine Derivatives
Author
Orlicka-Płocka, Marta 1   VIAFID ORCID Logo  ; Fedoruk-Wyszomirska, Agnieszka 1   VIAFID ORCID Logo  ; Gurda-Woźna, Dorota 1   VIAFID ORCID Logo  ; Pawelczak, Paweł 1   VIAFID ORCID Logo  ; Krawczyk, Patrycja 2 ; Giel-Pietraszuk, Małgorzata 1 ; Framski, Grzegorz 1   VIAFID ORCID Logo  ; Ostrowski, Tomasz 1 ; Wyszko, Eliza 1 

 Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; [email protected] (M.O.-P.); [email protected] (A.F.-W.); [email protected] (D.G.-W.); [email protected] (P.P.); [email protected] (M.G.-P.); [email protected] (G.F.); [email protected] (T.O.) 
 MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; [email protected] 
First page
950
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763921
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2544571381
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.