Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

E-textiles represent an emerging technology aiming toward the development of fabric with augmented functionalities, enabling the integration of displays, sensors, and other electronic components into textiles. Healthcare, protective clothing, fashion, and sports are a few examples application areas of e-textiles. Light-emitting textiles can have different applications: sensing, fashion, visual communication, light therapy, etc. Light emission can be integrated with textiles in different ways: fabricating light-emitting fibers and planar light-emitting textiles or employing side-emitting polymer optical fibers (POFs) coupled with light-emitting diodes (LEDs). Different kinds of technology have been investigated: alternating current electroluminescent devices (ACELs), inorganic and organic LEDs, and light-emitting electrochemical cells (LECs). The different device working principles and architectures are discussed in this review, highlighting the most relevant aspects and the possible approaches for their integration with textiles. Regarding POFs, the methodology to obtain side emissions and the critical aspects for their integration into textiles are discussed in this review. The main applications of light-emitting fabrics are illustrated, demonstrating that LEDs, alone or coupled with POFs, represent the most robust technology. On the other hand, OLEDs (Organic LEDs) are very promising for the future of light-emitting fabrics, but some issues still need to be addressed.

Details

Title
Light-Emitting Textiles: Device Architectures, Working Principles, and Applications
Author
Cinquino, Marco 1 ; Prontera, Carmela Tania 2 ; Pugliese, Marco 1   VIAFID ORCID Logo  ; Giannuzzi, Roberto 1 ; Taurino, Daniela 3 ; Gigli, Giuseppe 1 ; Maiorano, Vincenzo 2 

 Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, via Arnesano, 73100 Lecce, Italy; [email protected] (M.C.); [email protected] (M.P.); [email protected] (R.G.); [email protected] (D.T.); [email protected] (G.G.); Institute of Nanotechnology (CNR-NANOTEC), National Research Council, via Monteroni, 73100 Lecce, Italy; [email protected] 
 Institute of Nanotechnology (CNR-NANOTEC), National Research Council, via Monteroni, 73100 Lecce, Italy; [email protected] 
 Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, via Arnesano, 73100 Lecce, Italy; [email protected] (M.C.); [email protected] (M.P.); [email protected] (R.G.); [email protected] (D.T.); [email protected] (G.G.) 
First page
652
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
2072666X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2544899008
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.