Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper we propose a novel learning-based wavelet transform and demonstrate its utility as a representation in solving a number of linear inverse problems—these are asymmetric problems, where the forward problem is easy to solve, but the inverse is difficult and often ill-posed. The wavelet decomposition is comprised of the application of an invertible 2D wavelet filter-bank comprising symmetric and anti-symmetric filters, in combination with a set of 1×1 convolution filters learnt from Principal Component Analysis (PCA). The 1×1 filters are needed to control the size of the decomposition. We show that the application of PCA across wavelet subbands in this way produces an architecture equivalent to a separable Convolutional Neural Network (CNN), with the principal components forming the 1×1 filters and the subtraction of the mean forming the bias terms. The use of an invertible filter bank and (approximately) invertible PCA allows us to create a deep autoencoder very simply, and avoids issues of overfitting. We investigate the construction and learning of such networks, and their application to linear inverse problems via the Alternating Direction of Multipliers Method (ADMM). We use our network as a drop-in replacement for traditional discrete wavelet transform, using wavelet shrinkage as the projection operator. The results show good potential on a number of inverse problems such as compressive sensing, in-painting, denoising and super-resolution, and significantly close the performance gap with Generative Adversarial Network (GAN)-based methods.

Details

Title
Principal Component Wavelet Networks for Solving Linear Inverse Problems
Author
Tiddeman, Bernard 1   VIAFID ORCID Logo  ; Ghahremani, Morteza 2   VIAFID ORCID Logo 

 Department of Computer Science, Aberystwyth University, Aberystwyth SY23 3DB, UK 
 A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70150 Kuopio, Finland; [email protected] 
First page
1083
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20738994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2544938827
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.