Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As the size and weight of blades increase with the recent trend toward larger wind turbines, it is important to ensure the structural integrity of the blades. For this reason, the blade consists of an upper and lower skin that receives the load directly, a shear web that supports the two skins, and a spar cap that connects the skin and the shear web. Loads generated during the operation of the wind turbine can cause debonding damage on the spar cap-shear web joints. This may change the structural stiffness of the blade and lead to a lack of integrity; therefore, it would be beneficial to be able to identify possible damage in advance. In this paper we present a model to identify debonding damage based on natural frequency. This was carried out by modeling 1105 different debonding damages, which were classified by configuration type, location, and length. After that, the natural frequencies, due to the debonding damage of the blades, were obtained through modal analysis using FE analysis. Finally, an artificial neural network was used to study the relationship between debonding damage and the natural frequencies.

Details

Title
Identification of Debonding Damage at Spar Cap-Shear Web Joints by Artificial Neural Network Using Natural Frequency Relevant Key Features of Composite Wind Turbine Blades
Author
Yun-Jung, Jang 1 ; Hyeong-Jin, Kim 2   VIAFID ORCID Logo  ; Kim, Hak-Geun 2   VIAFID ORCID Logo  ; Ki-Weon Kang 2 

 Institute of Offshore Wind Energy, Kunsan National University, Gunsan 54158, Korea; [email protected] 
 Department of Mechanical Engineering, Kunsan National University, Gunsan 54158, Korea; [email protected] (H.-J.K.); [email protected] (H.-G.K.) 
First page
5327
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2544957590
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.