Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In the precision processing industry, maintaining the accuracy of machine tools for an extensive period is crucial. Machining accuracy is affected by numerous factors, among which spindle thermal elongation caused by an increase in machine temperature is the most common. This paper proposed a key temperature point selection algorithm and thermal error estimation method for spindle displacement in a machine tool. First, highly correlated temperature points were clustered into groups, and the characteristics of small differences within groups and large differences between groups were realized. The optimal number of key temperature points was then determined using the elbow method. Meanwhile, the long short-term memory (LSTM) modeling method was proposed to establish the relationship between the spindle thermal error and changes of the key temperature points. The results show the largest root mean square errors (RMSEs) of the proposed LSTM model and the key temperature point selection algorithm were within 0.6 µm in the spindle thermal displacement experiments with different temperature changes. The results demonstrated that the combined methodology can provide improved accuracy and robustness in predicting the spindle thermal displacement.

Details

Title
Spindle Thermal Error Prediction Based on LSTM Deep Learning for a CNC Machine Tool
Author
Yu-Chi, Liu 1   VIAFID ORCID Logo  ; Kun-Ying, Li 2   VIAFID ORCID Logo  ; Yao-Cheng, Tsai 1 

 Department of Computer Science and Information Engineering, National Chin-Yi University of Technology, Taichung 411030, Taiwan; [email protected] 
 Graduate Institute of Precision Manufacturing, National Chin-Yi University of Technology, Taichung 411030, Taiwan; [email protected] 
First page
5444
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2544958295
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.