Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this work, we analyze the impact of output filter design techniques aimed to reduce conducted emissions at the output of a DCDC power converter. A thorough analysis, based on high-frequency circuit models of the converter, is performed to assess expected improvements offered by different design strategies. This analysis is then confronted with measurements of conducted emissions at the output of a 300 W 48 V to 12 V Phase Shift Full Bridge (PSFB) prototype. Those experimental results demonstrate that a symmetric arrangement of the output LC filter and a direct bonding of the return output terminal of the converter to chassis are effective to reduce common mode conducted emissions at the output. Those results also demonstrate that the symmetry of the output LC filter can reduce conducted emissions in differential mode at high frequencies, where common mode to differential mode conversion is the predominant contribution to differential mode noise. However, direct bonding to chassis of the return output terminal may be ineffective at high frequencies due to the parasitic inductance associated with this connection. Main conclusions drawn for this analysis are applicable in general for isolated converters with a high voltage step between high and low voltage sides. Since the techniques of reduction of conducted emissions studied here do not increase the number of filter components, they are especially suitable for applications where high power density is an important requirement, e.g., aerospace or automotive applications.

Details

Title
Reducing Conducted Emissions at the Output of Full-Bridge DCDC Converters with High Voltage Steps
Author
González-Vizuete, Pablo 1   VIAFID ORCID Logo  ; Bernal-Méndez, Joaquín 2   VIAFID ORCID Logo  ; Martín-Prats, María A 1   VIAFID ORCID Logo 

 Department of Ingeniería Electrónica, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, 41092 Seville, Spain; [email protected] (P.G.-V.); [email protected] (M.A.M.-P.) 
 Department of Física Aplicada III, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, 41092 Seville, Spain 
First page
1373
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2544960946
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.