Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The present paper focuses on the high-pressure metal-organic vapor phase epitaxy (MOVPE) upside-down vertical reactor (where the inlet of cold gases is below a hot susceptor). This study aims to investigate thermo-kinetic phenomena taking place during the GaN (gallium nitride) growth process using trimethylgallium and ammonia at a pressure of above 2 bar. High pressure accelerates the growth process, but it results in poor thickness and quality in the obtained layers; hence, understanding the factors influencing non-uniformity is crucial. The present investigations have been conducted with the aid of ANSYS Fluent finite volume method commercial software. The obtained results confirm the possibility of increasing the growth rate by more than six times through increasing the pressure from 0.5 bar to 2.5 bar. The analysis shows which zones vortexes form in. Special attention should be paid to the transitional flow within the growth zone as well as the viewport. Furthermore, the normal reactor design cannot be used under the considered conditions, even for the lower pressure value of 0.5 bar, due to high turbulences.

Details

Title
Numerical Analysis of the High Pressure MOVPE Upside-Down Reactor for GaN Growth
Author
Niedzielski, Przemyslaw 1   VIAFID ORCID Logo  ; Raj, Ewa 1   VIAFID ORCID Logo  ; Lisik, Zbigniew 1 ; Plesiewicz, Jerzy 2 ; Grzanka, Ewa 3   VIAFID ORCID Logo  ; Czernecki, Robert 3   VIAFID ORCID Logo  ; Leszczynski, Mike 3 

 Department of Semiconductor and Optoelectronic Devices, Lodz University of Technology, Wolczanska 211/215, 90-924 Lodz, Poland; [email protected] (E.R.); [email protected] (Z.L.) 
 TopGaN Ltd., Sokolowska 29/37, 01-142 Warsaw, Poland; [email protected] (J.P.); [email protected] (E.G.); [email protected] (R.C.); [email protected] (M.L.) 
 TopGaN Ltd., Sokolowska 29/37, 01-142 Warsaw, Poland; [email protected] (J.P.); [email protected] (E.G.); [email protected] (R.C.); [email protected] (M.L.); Institute of High Pressure Physics PAS, Sokolowska 29/37, 01-142 Warsaw, Poland 
First page
1503
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2544961054
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.