Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Observational errors of Particle Filtering are studied over the case of a state-space model with a linear observation equation. In this study, the observational errors are estimated prior to the upcoming observations. This action is added to the basic algorithm of the filter as a new step for the acquisition of the state estimations. This intervention is useful in the presence of missing data problems mainly, as well as sample tracking for impoverishment issues. It applies theory of Homogeneous and Non-Homogeneous closed Markov Systems to the study of particle distribution over the state domain and, thus, lays the foundations for the employment of stochastic control against impoverishment. A simulating example is quoted to demonstrate the effectiveness of the proposed method in comparison with existing ones, showing that the proposed method is able to combine satisfactory precision of results with a low computational cost and provide an example to achieve impoverishment prediction and tracking.

Details

Title
Particle Filtering: A Priori Estimation of Observational Errors of a State-Space Model with Linear Observation Equation
First page
1445
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2545004772
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.