Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In the last two decades, information entropy measures have been relevantly applied in fuzzy clustering problems in order to regularize solutions by avoiding the formation of partitions with excessively overlapping clusters. Following this idea, relative entropy or divergence measures have been similarly applied, particularly to enable that kind of entropy-based regularization to also take into account, as well as interact with, cluster size variables. Particularly, since Rényi divergence generalizes several other divergence measures, its application in fuzzy clustering seems promising for devising more general and potentially more effective methods. However, previous works making use of either Rényi entropy or divergence in fuzzy clustering, respectively, have not considered cluster sizes (thus applying regularization in terms of entropy, not divergence) or employed divergence without a regularization purpose. Then, the main contribution of this work is the introduction of a new regularization term based on Rényi relative entropy between membership degrees and observation ratios per cluster to penalize overlapping solutions in fuzzy clustering analysis. Specifically, such Rényi divergence-based term is added to the variance-based Fuzzy C-means objective function when allowing cluster sizes. This then leads to the development of two new fuzzy clustering methods exhibiting Rényi divergence-based regularization, the second one extending the first by considering a Gaussian kernel metric instead of the Euclidean distance. Iterative expressions for these methods are derived through the explicit application of Lagrange multipliers. An interesting feature of these expressions is that the proposed methods seem to take advantage of a greater amount of information in the updating steps for membership degrees and observations ratios per cluster. Finally, an extensive computational study is presented showing the feasibility and comparatively good performance of the proposed methods.

Details

Title
Fuzzy Clustering Methods with Rényi Relative Entropy and Cluster Size
Author
Bonilla, Javier 1 ; Vélez, Daniel 2   VIAFID ORCID Logo  ; Montero, Javier 2 ; Rodríguez, J Tinguaro 2 

 Department of Statistics and Operations Research, Universidad Complutense de Madrid, 28040 Madrid, Spain; [email protected] (D.V.); [email protected] (J.M.); [email protected] (J.T.R.); Comisión Nacional del Mercado de Valores, 28006 Madrid, Spain 
 Department of Statistics and Operations Research, Universidad Complutense de Madrid, 28040 Madrid, Spain; [email protected] (D.V.); [email protected] (J.M.); [email protected] (J.T.R.) 
First page
1423
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2545005160
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.