Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Natural fibers have proven to be excellent reinforcing agents in composite materials. However, a critical disadvantage of natural fibers is their hydrophilic nature. In this study, banana trunk fibers were mechanically damaged using a high-speed blender, and the resulting fibers (MDBTF) were treated with (i) stearic acid (SAMDBTF) and (ii) calcium carbonate coated with 5% (wt/wt) stearic acid (SACCMDBTF). The moisture sorption, oil sorption and thermal properties of the fibers were determined. The morphology, roughness and the functional groups present were also investigated. Study data of the present study indicate that SACCMDBTF exhibited a faster oil sorption capacity than SAMDBTF. Fast uptake of the oil occurred during the first 5 min, whereby the quantity of oil sorbed in SAMDBTF and SACCMDBTF was 5.5 and 15.0 g oil g−1 fiber, respectively. The results of a used engine oil uptake study revealed that SAMDBTF and SACCMDBTF sorbed 9.5 and 18.3 g/g-1 fiber, respectively, at equilibrium. The obtained results suggest that the mechanically damaged process improved the thermal stability of the fibers. This work reveals that the inclusion of stearic-acid-coated calcium carbonate into the interstices of MDBTF yields is environmentally safe for green hydrophobic composites. SACCMDBTF are used as efficient adsorbents for the removal of spilled oil on aqueous media.

Details

Title
Chemical Modification of Banana Trunk Fibers for the Production of Green Composites
Author
Sathasivam, Kathiresan V 1 ; Mas Rosemal Hakim Mas Haris 2 ; Fuloria, Shivkanya 3 ; Fuloria, Neeraj Kumar 3 ; Malviya, Rishabha 4 ; Subramaniyan, Vetriselvan 5   VIAFID ORCID Logo 

 Faculty of Applied Science, AIMST University, Kedah 08100, Malaysia 
 School of Chemical Sciences, Universiti Sains Malaysia, Minden, Penang, George Town 11800, Malaysia; [email protected] 
 Faculty of Pharmacy, AIMST University, Kedah 08100, Malaysia; [email protected] (S.F.); [email protected] (N.K.F.) 
 Department of Pharmacy, SMAS, Galgotias University, Gautam Buddh Nagar, Greater Noida 201310, India; [email protected] 
 Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, Jenjarom Selangor, Shah Alam 42610, Malaysia; [email protected] 
First page
1943
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2545015568
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.