It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Ridesharing is a mobility concept in which a trip is shared by a vehicle’s driver and one or more passengers called riders. Ridesharing is considered as a more environmentally friendly alternative to single driver commutes in pollution-creating vehicles on overcrowded streets. In this paper, we present the core of a new strategy of the ridesharing system, making it more flexible and competitive than the recurring system. More precisely, we allow the driver and the rider to meet each other at an intermediate starting location and to separate at another intermediate ending location not necessarily their origins and destinations, respectively. This allows to reduce both the driver’s detour and the total travel cost. The term “A priori approach” means that the driver sets the sharing cost rate on the common path with rider in advance. An exact and heuristic approaches to identify meeting locations, while minimizing the total travel cost of both driver and rider are proposed. Finally, we analyze their empirical performance on a set of real road networks consisting of up to 3,5 million nodes and 8,7 million edges. Our experimental results show that our heuristics provide efficient performances within short CPU times and improves the recurring ridesharing approach in terms of cost-savings.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Loria laboratory, University of Lorraine, Nancy, France
2 University of Lorraine, Ile de Saulcy, Metz, France