Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Individual, daily and simultaneous measures of key variables to manage cattle have been traditionally difficult to achieve in grazing animals. However, nowadays, this could be achieved using technologies which are placed ‘in paddock’ such as automated weighing scales to measure liveweight (LW) and electronic feeders (EF) to measure supplement intake. We used both technologies to study the interplay between the intake of a self-fed supplement (molasses-lick blocks, MLB), growth, and feeding behavior of individual animals fed a sequence of different feed types. We identified a large individual variability in MLB intake with some animals consuming supplement regularly while others not consuming supplement at all. Regular consumers tended to grow more rapidly. Additionally, our results indicate that animals’ MLB intake can be predicted using the number of visits to the EF and their duration. In-paddock technologies could aid to quantify key factors, such as individual variability of supplement intake and LW, that would otherwise remain undetected.

Abstract

The aim of this study was to assess the ability of in-paddock technologies to capture individual variability of self-fed supplement intake (molasses-lick blocks, MLB), feeding behavior, and liveweight (LW) in grazing beef cattle. An electronic feeder (EF) and in-paddock walk-over-weighing system (WOW) were installed to measure, daily and simultaneously, individual MLB intake and LW. Cattle grazed (pastures and oat crops) and were fed (lucerne and oaten hay) during a 220 day trial. Over the entire period, we were able to quantify a large variability in MLB intake between individuals (p < 0.01; ranging from 0 to 194 g/hd per day). Liveweight change (p < 0.05, R = 0.44) and feeding behaviour (e.g., feeding frequency and duration, p < 0.01; R2 > 0.86) were positively correlated with MLB intake over the entire period but these correlations seemed to be affected by the type of feed. The intake of MLB seems to be explained by the individual behaviour of animals rather than the entire group. The use of in-paddock technologies enabled remote measurement of variability in supplement intake and cattle growth. The ability to monitor LW and feeding behavior of individual animals in a group could allow automatic individualized feeding of grazing cattle (amount and type of supplement) and managing low-performing animals under grazing conditions.

Details

Title
Application of In-Paddock Technologies to Monitor Individual Self-Fed Supplement Intake and Liveweight in Beef Cattle
Author
Imaz, José A 1   VIAFID ORCID Logo  ; García, Sergio 2 ; González, Luciano A 2   VIAFID ORCID Logo 

 School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2570, Australia; [email protected] (S.G.); [email protected] (L.A.G.); Instituto Nacional de Tecnología Agropecuaria (INTA), Capital Federal 1033, Argentina; Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW 2570, Australia 
 School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2570, Australia; [email protected] (S.G.); [email protected] (L.A.G.); Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW 2570, Australia 
First page
93
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20762615
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2545924980
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.