Full Text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

After weaning, piglets cannot absorb protein well and cannot get enough energy from the diet due to intestinal dysplasia. Medium-chain fatty acids are very effective in providing energy for piglets and may protect the integrity of the intestinal barrier to improve the healthy development of piglets. Therefore, we speculate that medium chain fatty acid glycerides can promote the growth of weaned piglets in a low protein diet. The present study examined the effects of medium-chain fatty acid glycerides on the growth performance, intestinal barrier function and inflammatory response of weaned piglets. These findings provide a new prospect for the application of medium-chain fatty acid triglycerides in piglets.

Abstract

Medium-chain fatty acid glycerides have been shown to provide energy for rapid oxidation in the body. The study was conducted to investigate the effects of dietary supplementation with medium-chain fatty acid glyceride on the growth performance and intestinal health of weaned piglets fed with a low-protein diet. Nighty healthy weaned piglets were randomly divided into five treatments: NP (Normal protein treatment, normal-protein diet no antibiotics included); NC (Negative control, low-protein diet no antibiotics included); PC (Positive control, low-protein diet +75 mg/kg quinocetone, 20 mg/kg virginiamycin and 50 mg/kg aureomycin); MCT (tricaprylin + tricaprin treatment, low-protein diet + tricaprylin + tricaprin); GML (glycerol monolaurate treatment, low-protein diet + glycerol monolaurate). The results showed that the average daily feed intake (ADFI) of the MCT treatment was significantly higher than that of the NP, NC treatments (p < 0.05). In the jejunum, the villus height of the GML treatment was significantly lower than that of the PC treatment (p < 0.05), and the number of goblet cells in the GML treatment was higher than that in the NC treatment (p < 0.05). Compared with the NC treatment, the MCT treatment significantly increased the level of claudin-1, Zonula occludens-1(ZO-1), while the GML treatment significantly increased the level of claudin-1, occludin, ZO-1 (p < 0.05). In the ileum, the level of ZO-1 in the GML treatment was significantly higher than that in the NP, NC, PC treatments (p < 0.05). Compared with the NC treatment, the GML treatment significantly increased the level of Secretory immunoglobulin A (SIgA) in the ileum and serum, while the MCT treatment significantly increased the level of SIgA and decreased the level of interleukin-6 (IL-6) in the ileum (p < 0.05). These results showed that the addition of medium-chain fatty acid glycerides to a low-protein diet could improve the growth performance and intestinal functional barrier of weaned piglets and also improve the immune function of weaned piglets.

Details

Title
Low-Protein Diet Supplemented with Medium-Chain Fatty Acid Glycerides Improves the Growth Performance and Intestinal Function in Post-Weaning Piglets
Author
Cui, Zhijuan 1 ; Wang, Xianze 2 ; Hou, Zhenping 3 ; Liao, Simeng 4   VIAFID ORCID Logo  ; Qi, Ming 4 ; Zha, Andong 4 ; Yang, Zhe 4 ; Zuo, Gang 2 ; Liao, Peng 2   VIAFID ORCID Logo  ; Chen, Yuguang 2 ; Tan, Bie 1   VIAFID ORCID Logo 

 College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; [email protected] (Z.C.); [email protected] (X.W.); [email protected] (G.Z.); [email protected] (P.L.); Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; [email protected] (S.L.); [email protected] (M.Q.); [email protected] (A.Z.); [email protected] (Z.Y.) 
 College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; [email protected] (Z.C.); [email protected] (X.W.); [email protected] (G.Z.); [email protected] (P.L.) 
 Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; [email protected] 
 Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; [email protected] (S.L.); [email protected] (M.Q.); [email protected] (A.Z.); [email protected] (Z.Y.) 
First page
1852
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20762615
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2545929840
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.