Full text

Turn on search term navigation

© 2021 Guedes et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Beta regressions are commonly used with responses that assume values in the standard unit interval, such as rates, proportions and concentration indices. Hypothesis testing inferences on the model parameters are typically performed using the likelihood ratio test. It delivers accurate inferences when the sample size is large, but can otherwise lead to unreliable conclusions. It is thus important to develop alternative tests with superior finite sample behavior. We derive the Bartlett correction to the likelihood ratio test under the more general formulation of the beta regression model, i.e. under varying precision. The model contains two submodels, one for the mean response and a separate one for the precision parameter. Our interest lies in performing testing inferences on the parameters that index both submodels. We use three Bartlett-corrected likelihood ratio test statistics that are expected to yield superior performance when the sample size is small. We present Monte Carlo simulation evidence on the finite sample behavior of the Bartlett-corrected tests relative to the standard likelihood ratio test and to two improved tests that are based on an alternative approach. The numerical evidence shows that one of the Bartlett-corrected typically delivers accurate inferences even when the sample is quite small. An empirical application related to behavioral biometrics is presented and discussed.

Details

Title
Bartlett-corrected tests for varying precision beta regressions with application to environmental biometrics
Author
Guedes, Ana C; Cribari-Neto, Francisco; Espinheira, Patrícia L
First page
e0253349
Section
Research Article
Publication year
2021
Publication date
Jun 2021
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2545974043
Copyright
© 2021 Guedes et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.