It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Cloud feedback remains the largest source of uncertainty in equilibrium climate sensitivity (ECS). Many studies have attempted to narrow uncertainties in cloud feedback and ECS by proposing observable metrics with high skill at predicting future climate, referred to as emergent constraints. These constraints are often associated with clouds, convection, and circulation, and are interrelated. However, physical explanations for these connections remain unclear. Here, we propose a new mechanism relating convection and clouds across multiple climate models. Some models show overly active deep convection on daily timescales in the subtropical low cloud regions, which contributes to weaker subsidence inversion and smaller amounts of low-level clouds. Such models predict smaller shortwave (SW) cloud feedback. Using precipitation frequency in these regions as an emergent constraint, encapsulating this mechanism, models with lower SW cloud feedback (<0.50 W m−2 °C−1) are found to exhibit erroneously frequent convection. Our results suggest that further improvements in understanding and better modeling of cloud and convective systems are necessary for accurate climate predictions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details







1 Earth System Division, National Institute for Environmental Studies, Tsukuba, Japan
2 Earth System Division, National Institute for Environmental Studies, Tsukuba, Japan; Atmosphere and Ocean Research Institute, the University of Tokyo, Kashiwa, Japan
3 Lawrence Livermore National Laboratory, Livermore, CA, United States of America
4 Atmosphere and Ocean Research Institute, the University of Tokyo, Kashiwa, Japan
5 Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan