It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this paper, a nonlinear adaptive speed controller for permanent magnet linear synchronous motors based on a newly developed adaptive recursive Backstepping control approach for a permanent magnet synchronous motor drive is discussed and analyzed. The Backstepping technique provides a systematic method to address this type of problem. It combines the notion of Lyapunov function and a controller procedure recursively. The adaptive Backstepping control approach is utilized to obtain the robustness for mismatched parameter uncertainties. The overall stability of the system is shown using Lyapunov stability theorem. The simulation results clearly show that the proposed scheme can track the speed reference.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer