It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The effect of an external magnetic field on the isotopic selectivity in a two-color three-step polarization-based isotope-selective photoionization of atomic samarium has been studied. Isotope-selective photoionization of samarium is realized through a level scheme having total angular momentum (J) sequence 0-1-1-continuum by using two lasers linearly polarized in the same direction and the isotopic selectivity is measured by varying the magnetic field strength perpendicular to the laser polarization axis while keeping the delay between the laser pulses fixed and vice versa. The experimental data have been analyzed and compared with the results of the numerical calculations. The magnetic field perpendicular to the laser polarization axis present in the laser-atom interaction region has been found to degrade the isotopic selectivity. Further, the Lande factor (\({g}_{{J}}\)) of the excited energy level 16 690.76 cm−1 (J = 1) of samarium has been determined from the observed oscillation in the isotopic selectivity. The value of \({g}_{{J}},\) thus obtained, is in good agreement with that reported in the literature.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
2 Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India