Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Abstract

Background

Leaves have highly diverse morphologies. However, with an evolutionary history of approximately 200 million years, leaves of the pine family are relatively monotonous and often collectively called “needles”, although they vary in length, width and cross-section shapes. It would be of great interest to determine whether Pinaceae leaves share similar morpho-physiological features and even consistent developmental and adaptive mechanisms.

Results

Based on a detailed morpho-anatomical study of leaves from all 11 Pinaceae genera, we particularly investigated the expression patterns of adaxial-abaxial polarity genes in two types of leaves (needlelike and flattened) and compared their photosynthetic capacities. We found that the two types of leaves share conserved spatial patterning of vasculatures and genetic networks for adaxial-abaxial polarity, although they display different anatomical structures in the mesophyll tissue differentiation and distribution direction. In addition, the species with needlelike leaves exhibited better photosynthetic capacity than the species with flattened leaves.

Conclusions

Our study provides the first evidence for the existence of a conserved genetic module controlling adaxial-abaxial polarity in the development of different Pinaceae leaves.

Details

Title
The flattened and needlelike leaves of the pine family (Pinaceae) share a conserved genetic network for adaxial-abaxial polarity but have diverged for photosynthetic adaptation
Author
Du, Hong; Jin-Hua, Ran; Yuan-Yuan, Feng; Xiao-Quan, Wang
Pages
1-12
Section
Research article
Publication year
2020
Publication date
2020
Publisher
BioMed Central
e-ISSN
27307182
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2546757505
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.