Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Abstract

Background

Polyglutamine regions (polyQ) are one of the most studied and prevalent homorepeats in eukaryotes. They have a particular length-dependent codon usage, which relates to a characteristic CAG-slippage mechanism. Pathologically expanded tracts of polyQ are known to form aggregates and are involved in the development of several human neurodegenerative diseases. The non-pathogenic function of polyQ is to mediate protein-protein interactions via a coiled-coil pairing with an interactor. They are usually located in a helical context.

Results

Here we study the stability of polyQ regions in evolution, using a set of 60 proteomes from four distinct taxonomic groups (Insecta, Teleostei, Sauria and Mammalia). The polyQ regions can be distinctly grouped in three categories based on their evolutionary stability: stable, unstable by length variation (inserted), and unstable by mutations (mutated). PolyQ regions in these categories can be significantly distinguished by their glutamine codon usage, and we show that the CAG-slippage mechanism is predominant in inserted polyQ of Sauria and Mammalia. The polyQ amino acid context is also influenced by the polyQ stability, with a higher proportion of proline residues around inserted polyQ. By studying the secondary structure of the sequences surrounding polyQ regions, we found that regarding the structural conformation around a polyQ, its stability category is more relevant than its taxonomic information. The protein-protein interaction capacity of a polyQ is also affected by its stability, as stable polyQ have more interactors than unstable polyQ.

Conclusions

Our results show that apart from the sequence of a polyQ, information about its orthologous sequences is needed to assess its function. Codon usage, amino acid context, structural conformation and the protein-protein interaction capacity of polyQ from all studied taxa critically depend on the region stability. There are however some taxa-specific polyQ features that override this importance. We conclude that a taxa-driven evolutionary analysis is of the highest importance for the comprehensive study of any feature of polyglutamine regions.

Details

Title
The features of polyglutamine regions depend on their evolutionary stability
Author
Mier, Pablo  VIAFID ORCID Logo  ; Andrade-Navarro, Miguel A
Pages
1-12
Section
Research article
Publication year
2020
Publication date
2020
Publisher
BioMed Central
e-ISSN
27307182
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2546768261
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.