Full text

Turn on search term navigation

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, we use the orthogonal system of the Jacobi polynomials as a tool to study the Riemann–Liouville fractional integral and derivative operators on a compact of the real axis. This approach has some advantages and allows us to complete the previously known results of the fractional calculus theory by means of reformulating them in a new quality. The proved theorem on the fractional integral operator action is formulated in terms of the Jacobi series coefficients and is of particular interest. We obtain a sufficient condition for a representation of a function by the fractional integral in terms of the Jacobi series coefficients. We consider several modifications of the Jacobi polynomials, which gives us the opportunity to study the invariant property of the Riemann–Liouville operator. In this direction, we have shown that the fractional integral operator acting in the weighted spaces of Lebesgue square integrable functions has a sequence of the included invariant subspaces.

Details

Title
Riemann–Liouville Operator in Weighted Lp Spaces via the Jacobi Series Expansion
Author
Kukushkin, Maksim V  VIAFID ORCID Logo 
First page
75
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20751680
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2546879091
Copyright
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.