Full Text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this article, we evaluate the impact of temperature and precipitation at the end of the 21st century (2075–2099) on the yield of maize in the Azuero Region in Panama. Using projected data from an atmospheric climate model, MRI-ACGM 3.2S, the study variables are related to maize yield (t ha1) under four different sea surface Temperature (SST) Ensembles (C0, C1, C2, and C3) and in three different planting dates (21 August, 23 September, and 23 October). In terms climate, results confirm the increase in temperatures and precipitation intensity that has been projected for the region at the end of the century. Moreover, differences are found in the average precipitation patterns of each SST-ensemble, which leads to difference in maize yield. SST-Ensembles C0, C1, and C3 predict a doubling of the yield observed from baseline period (1990–2003), while in C1, the yield is reduced around 5%. Yield doubling is attributed to the increase in rainfall, while yield decrease is related to the selection of a later planting date, which is indistinct to the SST-ensembles used for the calculation. Moreover, lower yields are related to years in which El Niño Southerm Oscilation (ENSO) are projected to occur at the end of century. The results are important as they provide a mitigation strategy for maize producers under rainfed model on the Azuero region, which is responsible for over 95% of the production of the country.

Details

Title
Using a Statistical Crop Model to Predict Maize Yield by the End-Of-Century for the Azuero Region in Panama
Author
Martínez, Marlemys M 1 ; Nakaegawa, Tosiyuki 2   VIAFID ORCID Logo  ; Reinhardt Pinzón 3   VIAFID ORCID Logo  ; Kusunoki, Shoji 4   VIAFID ORCID Logo  ; Román Gordón 5   VIAFID ORCID Logo  ; Sanchez-Galan, Javier E 6   VIAFID ORCID Logo 

 Facultad de Ciencias y Tecnología, Universidad Tecnológica de Panamá (UTP), P.O. Box 0819-07289 El Dorado, Panama; [email protected] 
 Meteorological Research Institute, Tsukuba 305-0052, Ibaraki, Japan; [email protected] (T.N.); [email protected] (S.K.) 
 Centro de Investigaciones Hidráulicas e Hidrotécnicas, Universidad Tecnológica de Panamá (UTP), P.O. Box 0819-07289 El Dorado, Panama; [email protected]; Centro de Estudios Multidisciplinarios de Ingeniería Ciencias y Tecnología (CEMCIT-AIP), P.O. Box 0819-07289 El Dorado, Panama 
 Meteorological Research Institute, Tsukuba 305-0052, Ibaraki, Japan; [email protected] (T.N.); [email protected] (S.K.); Faculty of Societal Safety Sciences, Kansai University, Takatsuki-shi 569-1098, Osaka, Japan 
 Instituto de Investigación Agropecuaria de Panamá (IDIAP), Estafeta de Los Santos, 0739 Los Santos, Panama; [email protected] 
 Centro de Estudios Multidisciplinarios de Ingeniería Ciencias y Tecnología (CEMCIT-AIP), P.O. Box 0819-07289 El Dorado, Panama; Facultad de Ingenieria de Sistemas Computacionales, Universidad Tecnológica de Panamá (UTP), P.O. Box 0819-07289 El Dorado, Panama 
First page
1097
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20734433
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2546891501
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.