Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Abstract

Background

Diabetes during pregnancy affects placental mitochondrial content and function, which has the potential to impact fetal development and the long-term health of offspring. Resistin is a peptide hormone originally discovered in mice as an adipocyte-derived factor that induced insulin resistance. In humans, resistin is primarily secreted by monocytes or macrophages. The regulation and roles of human resistin in diabetes during pregnancy remain unclear.

Methods

Fetal resistin levels were measured in cord blood from pregnancies with (n = 42) and without maternal diabetes (n = 81). Secretion of resistin from cord blood mononuclear cells (CBMCs) was measured. The actions of human resistin in mitochondrial biogenesis were determined in placental trophoblastic cells (BeWo cells) or human placental explant.

Results

Concentrations of human resistin in cord sera were higher in diabetic pregnancies (67 ng/ml) compared to healthy controls (50 ng/ml, P < 0.05), and correlated (r = 0.4, P = 0.002) with a measure of maternal glycemia (glucose concentration 2 h post challenge). Resistin mRNA was most abundant in cord blood mononuclear cells (CBMCs) compared with placenta and mesenchymal stem cells (MSCs). Secretion of resistin from cultured CBMCs was increased in response to high glucose (25 mM). Exposing BeWo cells or human placental explant to resistin decreased expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), mitochondrial abundance, and ATP production.

Conclusions

Resistin is increased in fetal circulation of infants exposed to the diabetic milieu, potentially reflecting a response of monocytes/macrophages to hyperglycemia and metabolic stresses associated with diabetes during pregnancy. Increased exposure to resistin may contribute to mitochondrial dysfunction and aberrant energy metabolism characteristic of offspring exposed to diabetes in utero.

Details

Title
Fetal circulating human resistin increases in diabetes during pregnancy and impairs placental mitochondrial biogenesis
Author
Jiang, Shaoning  VIAFID ORCID Logo  ; Teague, April M; Tryggestad, Jeanie B; Lyons, Timothy J; Chernausek, Steven D
Pages
1-9
Section
Research article
Publication year
2020
Publication date
2020
Publisher
BioMed Central
ISSN
10761551
e-ISSN
15283658
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2546935961
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.