Full text

Turn on search term navigation

© 2021 Friedlander et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The Salas y Gómez and Nazca ridges are underwater mountain chains that stretch across 2,900 km in the southeastern Pacific and are recognized for their high biodiversity value and unique ecological characteristics. Explorations of deep-water ecosystems have been limited in this region, and elsewhere globally. To characterize community composition of mesophotic and deep-sea demersal fauna at seamounts in the region, we conducted expeditions to Rapa Nui (RN) and Salas y Gómez (SyG) islands in 2011 and Desventuradas Islands in 2013. Remote autonomous baited-cameras were used to conduct stationary video surveys between 150–1,850 m at RN/SyG (N = 20) and 75–2,363 m at Desventuradas (N = 27). Individual organisms were identified to the lowest possible taxonomic level and relative abundance was quantified with the maximum number of individuals per frame. Deployments were attributed with associated environmental variables (temperature, salinity, dissolved oxygen, nitrate, silicate, phosphate, chlorophyll-a, seamount age, and bathymetric position index [BPI]). We identified 55 unique invertebrate taxa and 66 unique fish taxa. Faunal community structure was highly dissimilar between and within subregions both for invertebrate (p < 0.001) and fish taxa (p = 0.022). For fishes, dogfish sharks (Squalidae) accounted for the greatest dissimilarity between subregions (18.27%), with mean abundances of 2.26 ± 2.49 at Desventuradas, an order of magnitude greater than at RN/SyG (0.21 ± 0.54). Depth, seamount age, broad-scale BPI, and nitrate explained most of the variation in both invertebrate (R2 = 0.475) and fish (R2 = 0.419) assemblages. Slightly more than half the deployments at Desventuradas (N = 14) recorded vulnerable marine ecosystem taxa such as corals and sponges. Our study supports mounting evidence that the Salas y Gómez and Nazca ridges are areas of high biodiversity and high conservation value. While Chile and Peru have recently established or proposed marine protected areas in this region, the majority of these ridges lie outside of national jurisdictions and are under threat from overfishing, plastic pollution, climate change, and potential deep-sea mining. Given its intrinsic value, this region should be comprehensively protected using the best available conservation measures to ensure that the Salas y Gómez and Nazca ridges remain a globally unique biodiversity hotspot.

Details

Title
Deep-sea biodiversity at the extremes of the Salas y Gómez and Nazca ridges with implications for conservation
Author
Friedlander, Alan M; Goodell, Whitney; Giddens, Jonatha; Easton, Erin E; Wagner, Daniel
First page
e0253213
Section
Research Article
Publication year
2021
Publication date
Jun 2021
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2546968798
Copyright
© 2021 Friedlander et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.