It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Granular materials whether dry or immersed in fluid show dilation or compaction depending upon the initial conditions, solid fraction and normal stress. Here we probe the transient response of a dense granular suspension subjected to change of applied normal stress under simple shear. In this aim, normal-stress-imposed discrete element particle simulations are developed considering the contributions arising from the drag induced on the particles by fluid phase. These pressure-imposed simulations show transient behaviors of dense granular suspensions such as dilation or compaction before reaching a steady state following the µ(J) rheology. Less expectedly, the transient behavior, in particular the height of the system as a function of applied strain, can also be described by assuming that the system follows the steady µ(J) rheology at all times.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer