It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Molecular dynamics is applied to explore the deformation mechanism and crystal structure development of the AlCoCrFeNi high-entropy alloys under nanoimprinting. The influences of crystal structure, alloy composition, grain size, and twin boundary distance on the mechanical properties are carefully analyzed. The imprinting load indicates that the highest loading force is in ascending order with polycrystalline, nano-twinned (NT) polycrystalline, and monocrystalline. The change in alloy composition suggests that the imprinting force increases as the Al content in the alloy increases. The reverse Hall–Petch relation found for the polycrystalline structure, while the Hall–Petch and reverse Hall–Petch relations are discovered in the NT-polycrystalline, which is due to the interactions between the dislocations and grain/twin boundaries (GBs/TBs). The deformation behavior shows that shear strain and local stress are concentrated not only around the punch but also on GBs and adjacent to GBs. The slide and twist of the GBs play a major in controlling the deformation mechanism of polycrystalline structure. The twin boundary migrations are detected during the nanoimprinting of the NT-polycrystalline. Furthermore, the elastic recovery of material is insensitive to changes in alloy composition and grain size, and the formability of the pattern is higher with a decrease in TB distance.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 National Kaohsiung University of Science and Technology, Department of Mechanical Engineering, Kaohsiung, Taiwan (GRID:grid.412071.1) (ISNI:0000 0004 0639 0070); Hung Yen University of Technology and Education, Faculty of Mechanical Engineering, Khoai Chau District, Vietnam (GRID:grid.461542.0)
2 National Kaohsiung University of Science and Technology, Department of Mechanical Engineering, Kaohsiung, Taiwan (GRID:grid.412071.1) (ISNI:0000 0004 0639 0070)