Full Text

Turn on search term navigation

© 2014. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Abstract

The emergence of brain imaging techniques has shed light on the underlying mechanisms of brain diseases. Abnormalities found in the diseased brain have often been targeted by transcranial magnetic stimulation (TMS), which can modulate long-term neuronal excitability in humans in a noninvasive manner. Thus, its therapeutic application has been extensively explored for neurological and psychiatric disorders. As a result, TMS has been approved for clinical treatment for a few diseases, including drug-refractory depression. However, one of the biggest challenges with TMS is the difficulty in finding the optimal stimulation site. Until now, this process has been heavily dependent on previous activation studies and anatomical knowledge of the region itself, but it largely ignored the whole brain network that interacts with the focal brain region that has been targeted. Here, we propose a novel approach to estimate the prospective network effect following focal interference induced by TMS as a way to optimize the target identification process for TMS research.

Details

Title
Graph Theory-Guided Transcranial Magnetic Stimulation in Neurodegenerative Disorders
Author
Ko, Ji Hyun; Yoon Young Choi; Eidelberg, David
Pages
15-18
Section
Proceedings
Publication year
2014
Publication date
2014
Publisher
BioMed Central
e-ISSN
23328886
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2547525307
Copyright
© 2014. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.