Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Nano-sized palladium nanoparticles showed high catalytic activity with severe limitations in catalytic field due to the tendency to aggregate. A solid substrate with large specific surface area is an ideal carrier for palladium nanoparticles. In present work, polyethyleneimine/polycaprolactone/Pd nanoparticles (PEI/PCL@PdNPs) composite catalysts were successfully designed and prepared by electrospinning and reduction methods using PEI/PCL elexctrospun fiber as carrier. The added PEI component effectively regulated the microscopic morphology of the PEI/PCL fibers, following a large number of pit structures which increased the specific surface area of the electrospun fibers and provided active sites for loading of the palladium particles. The obtained PEI/PCL@PdNPs catalysts for reductions of 4-nitrophenol (4-NP) and 2-nitroaniline (2-NA) exhibited extremely efficient, stable, and reusable catalytic performance. It was worth mentioning that the reaction rate constant of catalytic reduction of 4-NP was as high as 0.16597 s−1. Therefore, we have developed a highly efficient catalyst with potential applications in the field of catalysis and water treatment.

Details

Title
Preparation of Palladium Nanoparticles Decorated Polyethyleneimine/Polycaprolactone Composite Fibers Constructed by Electrospinning with Highly Efficient and Recyclable Catalytic Performances
Author
Wang, Cuiru 1 ; Yin, Juanjuan 2 ; Han, Shiqi 2 ; Jiao, Tifeng 1   VIAFID ORCID Logo  ; Bai, Zhenhua 3 ; Zhou, Jingxin 2 ; Zhang, Lexin 2 ; Peng, Qiuming 4 

 State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China; Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China 
 Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China 
 National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, China 
 State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China 
First page
559
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2547526772
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.