Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

[...]there are hundreds of putative microRNA, long noncoding RNA (lncRNA) and antisense RNA non-protein coding loci within the HLA genomic region that may be expressed by different cell types and play important roles in the regulation of immune-response genes and in the aetiology of numerous diseases [1,2,3,4,5,6]. Since about 2010, the next generation sequencing revolution has been contributing slowly to a better understanding of human MHC gene diversity in worldwide populations, non-coding region variation of HLA loci, the effect of regulatory variation on HLA expression, diversity and polymorphisms in shaping lineage-specific expression, and the impact of HLA expression on disease susceptibility and transplantation outcomes [7]. The MHC of all jawed vertebrate species is characterised specifically by two primary classes of glycoproteins that bind peptides derived from intracellular or extracellular antigens to present to circulating T-cells and play an integral role in adaptive and innate immune systems [12]. Because of the MHC Class I and II gene sequences, duplications and functional diversity, the use of animal experimental models such as macaque, mice, quail, fish, etc., to evaluate the importance of the structure, diversity, expression and function of these genes in immunity, reproduction, mate choice, health, disease, transplantation and vaccination is invaluable [13,14,15]. A similar sentiment about segregation analysis was extended recently to the study and sequencing of two MHC Class I loci in European barn owls in an investigation of allele segregation patterns in families, showing that family studies not only help to improve the accuracy of MHC genotyping and haplotyping, but also contribute to enhanced analyses in the context of MHC evolutionary ecology [34,35]. Shiina and Blancher provided an extensive review on the use of Old World monkeys in experimental medicine to study the role of MHC polymorphisms in allograft transplantation of organs and stem cells, immune response against infectious pathogens and to vaccines, and various biological systems including reproduction [17].

Details

Title
Genomic Diversity of the Major Histocompatibility Complex in Health and Disease
Author
Kulski, Jerzy K 1   VIAFID ORCID Logo  ; Shiina, Takashi 2   VIAFID ORCID Logo  ; Dijkstra, Johannes M 3 

 Faculty of Health and Medical Sciences, UWA Medical School, The University of Western Australia, Crawley, WA 6009, Australia; Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; [email protected] 
 Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; [email protected] 
 Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan; [email protected] 
First page
1270
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20734409
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548359721
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.