Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Adipogenesis is a crucial cellular process that contributes to the expansion of adipose tissue in obesity. Shockwaves are mechanical stimuli that transmit signals to cause biological responses. The purpose of this study is to evaluate the effects of shockwaves on adipogenesis. We treated 3T3L-1 cells and human primary preadipocytes for differentiation with or without shockwaves. Western blots and quantitative real-time reverse transcriptase PCR (qRT-PCR) for adipocyte markers including peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding proteins (C/EBPα) were performed. Extracellular adenosine triphosphate (ATP) and intracellular cyclic adenosine monophosphate (cAMP) levels, which are known to affect adipocyte differentiation, were measured. Shockwave treatment decreased intracellular lipid droplet accumulation in primary human preadipocytes and 3T3-L1 cells after 11–12 days of differentiation. Levels of key adipogenic transcriptional factors PPARγ and/or C/EBPα were lower in shockwave-treated human primary preadipocytes and 3T3L-1 cells after 12–13 days of differentiation than in shockwave-untreated cells. Shockwave treatment induced release of extracellular ATP from preadipocytes and decreased intracellular cAMP levels. Shockwave-treated preadipocytes showed a higher level of β-catenin and less PPARγ expression than shockwave-untreated cells. Supplementation with 8-bromo-cAMP analog after shockwave treatment rescued adipocyte differentiation by preventing the effect of shockwaves on β-catenin, Wnt10b mRNA, and PPARγ expression. Low-energy shockwaves suppressed adipocyte differentiation by decreasing PPARγ. Our study suggests an insight into potential uses of shockwave-treatment for obesity.

Details

Title
Shockwaves Suppress Adipocyte Differentiation via Decrease in PPARγ
Author
Jeong, Myeongsook
First page
166
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20734409
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548361644
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.