Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Standard Ethernet (IEEE 802.3 and the TCP/IP protocol suite) is gradually applied in industrial control system (ICS) with the development of information technology. It breaks the natural isolation of ICS, but contains no security mechanisms. An improved intrusion detection system (IDS), which is strongly correlated to specific industrial scenarios, is necessary for modern ICS. On one hand, this paper outlines three kinds of attack models, including infiltration attacks, creative forging attacks, and false data injection attacks. On the other hand, a two stage IDS is proposed, which contains a traffic prediction model and an anomaly detection model. The traffic prediction model, which is based on the autoregressive integrated moving average (ARIMA), can forecast the traffic of the ICS network in the short term and detect infiltration attacks precisely according to the abnormal changes in traffic patterns. Furthermore, the anomaly detection model, using a one class support vector machine (OCSVM), is able to detect malicious control instructions by analyzing the key field in Ethernet/IP packets. The confusion matrix is selected to testify to the effectiveness of the proposed method, and two other innovative IDSs are used for comparison. The experiment results show that the proposed two stage IDS in this paper has an outstanding performance in detecting infiltration attacks, forging attacks, and false data injection attacks compared with other IDSs.

Details

Title
A Two Stage Intrusion Detection System for Industrial Control Networks Based on Ethernet/IP
Author
Yu, Wenbin  VIAFID ORCID Logo  ; Wang, Yiyin  VIAFID ORCID Logo 
First page
1545
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548436563
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.