It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Abnormal climate event is that some meteorological conditions are extreme in a certain time interval. The existing methods for detecting abnormal climate events utilize supervised learning models to learn the abnormal patterns, but they cannot detect the untrained patterns. To overcome this problem, we construct a dynamic graph by discovering the correlation among the climate time series and propose a novel dynamic graph embedding model based on graph entropy called EDynGE to discriminate anomalies. The graph entropy measurement quantifies the information of the graphs and constructs the embedding space. We conducted experiments on synthetic datasets and real-world meteorological datasets. The results showed that EdynGE model achieved a better F1-score than the baselines by 43.2%, and the number of days of abnormal climate events has increased by 304.5 days in the past 30 years.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Chung-Ang University, Department of Computer Engineering, Seoul, Republic of Korea (GRID:grid.254224.7) (ISNI:0000 0001 0789 9563)