Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The shoot apical meristem (SAM) is a crucial tissue located at the tops of plants which can continually grow and differentiate to develop into all aboveground parts. SAM development is controlled by a series of complicated molecular regulation networks, among which microRNAs (miRNAs) and their target genes play key roles. However, little is known about these miRNAs in woody plants. In this study, we used small RNA (sRNA) sequencing to build four libraries derived from shoot tips and mature leaf tissues of Populus tomentosa, and identified 99 known miRNA families. In addition, 193 known miRNAs, including phytohormone-, developmental-, and cellular process-related miRNAs, showed significant differential expression. Interestingly, quantitative real-time reverse transcription polymerase chain reaction (PCR) analysis of miR172, miR164, and miR393 expression showed marked changes in expression patterns during the development of shoot tips. The target genes of these miRNAs were involved in the regulation of hormone responses and stem cell function. In particular, the miR172 target APETALA2 (AP2), involved in the maintenance of stem cells in the shoot apex, was expressed specifically during the initial active stage of development. These findings provide new insights into the regulatory mechanisms of miRNAs involved in SAM development and differentiation in tree species.

Details

Title
Identification and Analysis of microRNAs in the SAM and Leaves of Populus tomentosa
Author
Cui, Jiawen 1 ; Lu, Weichao 1 ; Lu, Zhaogeng 1 ; Ren, Shixiong 1 ; Zhao, Beibei 1 ; Wang, Li 1 ; Teng, Nianjun 2   VIAFID ORCID Logo  ; Jin, Biao 1   VIAFID ORCID Logo 

 College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China 
 College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China 
First page
130
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
19994907
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548485583
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.