It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The formation and development mechanism of landfall cyclone rainstorms that occur on the north slope of the Dabie Mountains were investigated by the determination of typical occurrences. Interaction between the tropical cyclone and the westerly trough was characterized by the favorable circulation backgrounds of landfall tropical cyclone rainstorms on the north slope of the Dabie Mountains. A conveyor belt was created between the easterly jet flow of the tropical cyclone and the subtropical high pressure of the western equatorial Pacific Ocean and the southerly jet flow of the westerly trough front, creating a huge amount of energy and vapor from the landfall tropical cyclone in the rainstorm area and destabilizing the stratification. These conditions were advantageous to the frontogenesis of a warm front and the development of Mesoscale convective systems (MCS) in the westerly cold air that met the inverted trough located at the northern portion of the tropical cyclone. The existence and development of the mesoscale front area in the ground provide a trigger mechanism for the rainstorm. The MCS occurred and developed in the equivalent potential temperature theta se (θse) frontal zone, which is located between the low pressure area of the typhoon and the cold air, which is located at the rear of the westerly trough. The terrain block slowed or stopped the motion of the low pressure system formed by the landfall tropical cyclone, which was conducive to the enhancement of the rainstorm.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Institute of Heavy Rain, Wuhan, CMA 430205, China; China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Severe Weather, Beijing 100089, China
2 Institute of Heavy Rain, Wuhan, CMA 430205, China