Full text

Turn on search term navigation

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Information on the distribution and dynamics of dwellings and their inhabitants is essential to support decision-making in various fields such as energy provision, land use planning, risk assessment and disaster management. However, as various different of approaches to estimate the current distribution of population and dwellings exists, further evidence on past dynamics is needed for a better understanding of urban processes. This article therefore addresses the question of whether and how accurately historical distributions of dwellings and inhabitants can be reconstructed with commonly available geodata from national mapping and cadastral agencies. For this purpose, an approach for the automatic derivation of such information is presented. The data basis is constituted by a current digital landscape model and a 3D building model combined with historical land use information automatically extracted from historical topographic maps. For this purpose, methods of image processing, machine learning, change detection and dasymetric mapping are applied. The results for a study area in Germany show that it is possible to automatically derive decadal historical patterns of population and dwellings from 1950 to 2011 at the level of a 100 m grid with slight underestimations and acceptable standard deviations. By a differentiated analysis we were able to quantify the errors for different urban structure types.

Details

Title
Mapping Long-Term Dynamics of Population and Dwellings Based on a Multi-Temporal Analysis of Urban Morphologies
Author
Herold, Hendrik  VIAFID ORCID Logo  ; Behnisch, Martin  VIAFID ORCID Logo  ; Jehling, Mathias
First page
2
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
22209964
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548558011
Copyright
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.