Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Though tourists can search for necessary information on the internet while sightseeing, it takes effort and is inconvenient to obtain available information related to specific sightseeing spots among the copious amount of information online. Targeting urban tourist areas in Japan, the present study aims to develop a system that can provide guidance and information concerning sightseeing spots by integrating location-based augmented reality (AR) and object-recognition AR and by using pictograms. The system enables users to efficiently obtain the directions to sightseeing spots and nearby facilities within urban tourist areas and sightseeing spot information. Additionally, the city of Chofu in the metropolis of Tokyo was selected as the operation target area. The operation of the system was conducted for 1 month, targeting those inside and outside the operation target area, and a web questionnaire survey was conducted with a total number of 50 users. From the evaluation results of the web questionnaire survey, the usefulness of the original functions of integrating location-based AR and object-recognition AR and by using pictograms, as well as of the entire system, was analyzed. From the results of the access analysis of users’ log data, it is expected that users will further utilize each function. Additionally, it is evident that location-based AR was used more often than was object-recognition AR.

Details

Title
A Sightseeing Support System Using Augmented Reality and Pictograms within Urban Tourist Areas in Japan
Author
Yamamoto, Kayoko
First page
381
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
22209964
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548571128
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.