Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

AI (artificial intelligence)-based analysis of geospatial data has gained a lot of attention. Geospatial datasets are multi-dimensional; have spatiotemporal context; exist in disparate formats; and require sophisticated AI workflows that include not only the AI algorithm training and testing, but also data preprocessing and result post-processing. This complexity poses a huge challenge when it comes to full-stack AI workflow management, as researchers often use an assortment of time-intensive manual operations to manage their projects. However, none of the existing workflow management software provides a satisfying solution on hybrid resources, full file access, data flow, code control, and provenance. This paper introduces a new system named Geoweaver to improve the efficiency of full-stack AI workflow management. It supports linking all the preprocessing, AI training and testing, and post-processing steps into a single automated workflow. To demonstrate its utility, we present a use case in which Geoweaver manages end-to-end deep learning for in-time crop mapping using Landsat data. We show how Geoweaver effectively removes the tedium of managing various scripts, code, libraries, Jupyter Notebooks, datasets, servers, and platforms, greatly reducing the time, cost, and effort researchers must spend on such AI-based workflows. The concepts demonstrated through Geoweaver serve as an important building block in the future of cyberinfrastructure for AI research.

Details

Title
Geoweaver: Advanced Cyberinfrastructure for Managing Hybrid Geoscientific AI Workflows
Author
Sun, Ziheng 1   VIAFID ORCID Logo  ; Di, Liping 1 ; Burgess, Annie 2 ; Tullis, Jason A 3 ; Magill, Andrew B 4 

 Center for Spatial Information Science and Systems, George Mason University, 4400 University Dr, Fairfax, VA 22030, USA; [email protected] 
 Earth Science Information Partners (ESIP), Raleigh, NC 27612, USA; [email protected] 
 Department of Geosciences and Center for Advanced Spatial Technologies, University of Arkansas, Fayetteville, AR 72701, USA; [email protected] 
 Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX 78712, USA; [email protected] 
First page
119
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
22209964
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548576333
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.